Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Oncology ; (12): 276-281, 2022.
Article in Chinese | WPRIM | ID: wpr-935211

ABSTRACT

Objective: Systematically summarize the research progress of clinical trials of gastric cancer oncology drugs and the overview of marketed drugs in China from 2012 to 2021, providing data and decision-making evidence for relevant departments. Methods: Based on the registration database of the drug clinical trial registration and information disclosure platform of Food and Drug Administration of China and the data query system of domestic and imported drugs, the information on gastric cancer drug clinical trials, investigational drugs and marketed drugs from January 1, 2012 to December 31, 2021 was analyzed, and the differences between Chinese and foreign enterprises in terms of trial scope, trial phase, treatment lines and drug type, effect and mechanism studies were compared. Results: A total of 114 drug clinical trials related to gastric tumor were registered in China from 2012 to 2021, accounting for 3.7% (114/3 041) of all anticancer drug clinical trials in the same period, the registration number showed a significant growth rate after 2016 and reached its peak with 32 trials in 2020. Among them, 85 (74.6%, 85/114) trials were initiated by Chinese pharmaceutical enterprise. Compared with foreign pharmaceutical enterprise, Chinese pharmaceutical enterprise had higher rates of phase I trials (35.3% vs 6.9%, P=0.001), but the rate of international multicenter trials (11.9% vs 67.9%, P<0.001) was relatively low. There were 76 different drugs involved in relevant clinical trials, of which 65 (85.5%) were targeted drugs. For targeted drugs, HER2 is the most common one (14 types), followed by PD-1 and multi-target VEGER. In the past ten years, 3 of 4 marketed drugs for gastric cancer treatment were domestic and included in the national medical insurance directory. Conclusions: From 2012 to 2021, China has made some progress in drug research and development for gastric carcinoma. However, compared with the serious disease burden, it is still insufficient. Targeted strengthening of research and development of investment in many aspects of gastric cancer drugs, such as new target discovery, matured target excavating, combination drug development and early line therapy promotion, is the key work in the future, especially for domestic companies.


Subject(s)
Humans , China , Gastrointestinal Agents/therapeutic use , Gastrointestinal Neoplasms , Pharmaceutical Preparations , United States , United States Food and Drug Administration
2.
China Journal of Chinese Materia Medica ; (24): 793-797, 2008.
Article in Chinese | WPRIM | ID: wpr-284389

ABSTRACT

<p><b>OBJECTIVE</b>To study whether aristololactam I (AL-I) can enter renal proximal tubular epithelial cells and the situation of intracellular distribution and accumulation.</p><p><b>METHOD</b>Cultured human renal proximal tubular epithelial cell line (HK-2) was used as the subject. Intracellular fluorescence from AL-I and its distribution are examined by fluorescence microscopy after a treatment with different concentration of AL-I, the intracellular accumulation of AL-I was also investigated by incubated cells in AL-I -free medium for 48 h after washing-out the media containing AL-I.</p><p><b>RESULT</b>After treatment of AL-I (concentration from 5 microg x mL(-1) to 20 microg x mL(-1)), glaucous fluorescence could be observed inside renal proximal tubular epithelial cells at 0.5 h, and the fluorescence distributed only in cytoplasm while not be observed in nuclei. Moreover, the fluorescence of AL-I could be kept in cytoplasm for more than 48 h after washing out the media containing AL-I .</p><p><b>CONCLUSION</b>AL-I is able to enter renal proximal tubular epithelial cells in short time and accumulate in cytoplasm, but not enter nuclei. This property may contribute to the cytotoxic mechanism of renal injury induced by AL-I, which may partially explain the persistent renal toxicity of AAs and its metabolites in the development of aristolochic acid nephropathy.</p>


Subject(s)
Animals , Humans , Aristolochic Acids , Metabolism , Toxicity , Cell Line , Cell Nucleus , Metabolism , Cytoplasm , Metabolism , Epithelial Cells , Cell Biology , Metabolism , Pathology , Kidney Diseases , Metabolism , Pathology , Kidney Tubules, Proximal , Cell Biology , Pathology , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL